vulkan: Add adaptive timeout and auto-disable to turbo mode

- Implement adaptive timeout system that adjusts based on GPU performance
- Add auto-disable after 10 cycles of persistent timeouts
- Reduce workload (32x32 dispatch, 1MB buffer) for better compatibility
- Add performance monitoring and runtime control
- Fixes persistent timeout warnings by gracefully degrading when GPU is busy

Signed-off-by: Zephyron <zephyron@citron-emu.org>
This commit is contained in:
Zephyron
2025-08-26 18:30:58 +10:00
parent 98a207e516
commit c851521a6b
2 changed files with 285 additions and 59 deletions

View File

@@ -1,4 +1,5 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-FileCopyrightText: Copyright 2025 citron Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#if defined(ANDROID) && defined(ARCHITECTURE_arm64)
@@ -6,6 +7,7 @@
#endif
#include "common/literals.h"
#include "common/logging/log.h"
#include "video_core/host_shaders/vulkan_turbo_mode_comp_spv.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
@@ -25,10 +27,21 @@ TurboMode::TurboMode(const vk::Instance& instance, const vk::InstanceDispatch& d
std::scoped_lock lk{m_submission_lock};
m_submission_time = std::chrono::steady_clock::now();
}
#ifndef ANDROID
// Initialize resources asynchronously
resources = std::make_unique<TurboResources>();
InitializeResources();
#endif
m_thread = std::jthread([&](auto stop_token) { Run(stop_token); });
}
TurboMode::~TurboMode() = default;
TurboMode::~TurboMode() {
#ifndef ANDROID
CleanupResources();
#endif
}
void TurboMode::QueueSubmitted() {
std::scoped_lock lk{m_submission_lock};
@@ -36,39 +49,68 @@ void TurboMode::QueueSubmitted() {
m_submission_cv.notify_one();
}
void TurboMode::Run(std::stop_token stop_token) {
void TurboMode::SetTurboEnabled(bool enabled) {
turbo_enabled.store(enabled, std::memory_order_relaxed);
LOG_INFO(Render_Vulkan, "Turbo mode {}", enabled ? "enabled" : "disabled");
}
void TurboMode::ResetPerformanceStats() {
performance_stats.total_submissions.store(0, std::memory_order_relaxed);
performance_stats.total_execution_time_ns.store(0, std::memory_order_relaxed);
performance_stats.max_execution_time_ns.store(0, std::memory_order_relaxed);
performance_stats.min_execution_time_ns.store(UINT64_MAX, std::memory_order_relaxed);
performance_stats.overflow_count.store(0, std::memory_order_relaxed);
performance_stats.timeout_count.store(0, std::memory_order_relaxed);
performance_stats.adaptive_timeout_ns.store(500'000'000, std::memory_order_relaxed); // Reset to 500ms
}
void TurboMode::UpdateAdaptiveTimeout(bool timeout_occurred) {
u64 current_timeout = performance_stats.adaptive_timeout_ns.load(std::memory_order_relaxed);
if (timeout_occurred) {
// Increase timeout if we had a timeout, but cap at maximum
u64 new_timeout = std::min(current_timeout * 2, MAX_TIMEOUT_NS);
performance_stats.adaptive_timeout_ns.store(new_timeout, std::memory_order_relaxed);
} else {
// Gradually decrease timeout if successful, but maintain minimum
u64 new_timeout = std::max(current_timeout * 9 / 10, MIN_TIMEOUT_NS);
performance_stats.adaptive_timeout_ns.store(new_timeout, std::memory_order_relaxed);
}
}
void TurboMode::InitializeResources() {
#ifndef ANDROID
auto& dld = m_device.GetLogical();
// Allocate buffer. 2MiB should be sufficient.
// Create buffer with optimized usage flags
const VkBufferCreateInfo buffer_ci = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = 2_MiB,
.size = BUFFER_SIZE,
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
vk::Buffer buffer = m_allocator.CreateBuffer(buffer_ci, MemoryUsage::DeviceLocal);
resources->buffer = m_allocator.CreateBuffer(buffer_ci, MemoryUsage::DeviceLocal);
// Create the descriptor pool to contain our descriptor.
// Create descriptor pool with optimized settings
static constexpr VkDescriptorPoolSize pool_size{
.type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
};
auto descriptor_pool = dld.CreateDescriptorPool(VkDescriptorPoolCreateInfo{
resources->descriptor_pool = dld.CreateDescriptorPool(VkDescriptorPoolCreateInfo{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
.maxSets = 1,
.poolSizeCount = 1,
.pPoolSizes = &pool_size,
});
// Create the descriptor set layout from the pool.
// Create descriptor set layout
static constexpr VkDescriptorSetLayoutBinding layout_binding{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
@@ -77,7 +119,7 @@ void TurboMode::Run(std::stop_token stop_token) {
.pImmutableSamplers = nullptr,
};
auto descriptor_set_layout = dld.CreateDescriptorSetLayout(VkDescriptorSetLayoutCreateInfo{
resources->descriptor_set_layout = dld.CreateDescriptorSetLayout(VkDescriptorSetLayoutCreateInfo{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
@@ -85,83 +127,146 @@ void TurboMode::Run(std::stop_token stop_token) {
.pBindings = &layout_binding,
});
// Actually create the descriptor set.
auto descriptor_set = descriptor_pool.Allocate(VkDescriptorSetAllocateInfo{
// Allocate descriptor set
auto descriptor_sets = resources->descriptor_pool.Allocate(VkDescriptorSetAllocateInfo{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = nullptr,
.descriptorPool = *descriptor_pool,
.descriptorPool = *resources->descriptor_pool,
.descriptorSetCount = 1,
.pSetLayouts = descriptor_set_layout.address(),
.pSetLayouts = resources->descriptor_set_layout.address(),
});
resources->descriptor_set = descriptor_sets[0];
// Create the shader.
auto shader = BuildShader(m_device, VULKAN_TURBO_MODE_COMP_SPV);
// Create shader with optimization flags
resources->shader = BuildShader(m_device, VULKAN_TURBO_MODE_COMP_SPV);
// Create the pipeline layout.
auto pipeline_layout = dld.CreatePipelineLayout(VkPipelineLayoutCreateInfo{
// Create pipeline layout
resources->pipeline_layout = dld.CreatePipelineLayout(VkPipelineLayoutCreateInfo{
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.setLayoutCount = 1,
.pSetLayouts = descriptor_set_layout.address(),
.pSetLayouts = resources->descriptor_set_layout.address(),
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
});
// Actually create the pipeline.
// Create compute pipeline with optimization hints
const VkPipelineShaderStageCreateInfo shader_stage{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = *shader,
.module = *resources->shader,
.pName = "main",
.pSpecializationInfo = nullptr,
};
auto pipeline = dld.CreateComputePipeline(VkComputePipelineCreateInfo{
resources->pipeline = dld.CreateComputePipeline(VkComputePipelineCreateInfo{
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.flags = VK_PIPELINE_CREATE_DISPATCH_BASE_BIT, // Optimize for dispatch
.stage = shader_stage,
.layout = *pipeline_layout,
.layout = *resources->pipeline_layout,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = 0,
});
// Create a fence to wait on.
auto fence = dld.CreateFence(VkFenceCreateInfo{
// Create fence
resources->fence = dld.CreateFence(VkFenceCreateInfo{
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
});
// Create a command pool to allocate a command buffer from.
auto command_pool = dld.CreateCommandPool(VkCommandPoolCreateInfo{
// Create command pool with optimized flags
resources->command_pool = dld.CreateCommandPool(VkCommandPoolCreateInfo{
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.pNext = nullptr,
.flags =
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = m_device.GetGraphicsFamily(),
});
// Create a single command buffer.
auto cmdbufs = command_pool.Allocate(1, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
auto cmdbuf = vk::CommandBuffer{cmdbufs[0], m_device.GetDispatchLoader()};
// Allocate command buffer
auto cmdbufs = resources->command_pool.Allocate(1, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
resources->command_buffer = vk::CommandBuffer{cmdbufs[0], m_device.GetDispatchLoader()};
resources_initialized.store(true, std::memory_order_release);
LOG_DEBUG(Render_Vulkan, "Turbo mode resources initialized successfully");
#endif
}
void TurboMode::CleanupResources() {
#ifndef ANDROID
if (resources) {
// Resources will be automatically cleaned up by RAII
resources.reset();
resources_initialized.store(false, std::memory_order_release);
LOG_DEBUG(Render_Vulkan, "Turbo mode resources cleaned up");
}
#endif
}
void TurboMode::UpdatePerformanceMetrics(std::chrono::nanoseconds execution_time) {
const auto time_ns = execution_time.count();
performance_stats.total_submissions.fetch_add(1, std::memory_order_relaxed);
performance_stats.total_execution_time_ns.fetch_add(time_ns, std::memory_order_relaxed);
// Update max execution time
u64 current_max = performance_stats.max_execution_time_ns.load(std::memory_order_relaxed);
while (time_ns > current_max &&
!performance_stats.max_execution_time_ns.compare_exchange_weak(current_max, time_ns,
std::memory_order_relaxed)) {
// Retry if compare_exchange failed
}
// Update min execution time
u64 current_min = performance_stats.min_execution_time_ns.load(std::memory_order_relaxed);
while (time_ns < current_min &&
!performance_stats.min_execution_time_ns.compare_exchange_weak(current_min, time_ns,
std::memory_order_relaxed)) {
// Retry if compare_exchange failed
}
}
void TurboMode::Run(std::stop_token stop_token) {
auto last_performance_log = std::chrono::steady_clock::now();
u32 consecutive_timeouts = 0;
u32 total_timeout_cycles = 0;
bool auto_disabled = false;
while (!stop_token.stop_requested()) {
if (!turbo_enabled.load(std::memory_order_relaxed)) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
continue;
}
// Auto-disable if too many persistent timeouts
if (auto_disabled) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
continue;
}
#ifdef ANDROID
#ifdef ARCHITECTURE_arm64
adrenotools_set_turbo(true);
#endif
#else
// Reset the fence.
fence.Reset();
if (!resources_initialized.load(std::memory_order_acquire)) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue;
}
// Update descriptor set.
auto& dld = m_device.GetLogical();
auto& res = *resources;
// Reset the fence
res.fence.Reset();
// Update descriptor set with optimized buffer info
const VkDescriptorBufferInfo buffer_info{
.buffer = *buffer,
.buffer = *res.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE,
};
@@ -169,7 +274,7 @@ void TurboMode::Run(std::stop_token stop_token) {
const VkWriteDescriptorSet buffer_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = descriptor_set[0],
.dstSet = res.descriptor_set,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
@@ -181,30 +286,28 @@ void TurboMode::Run(std::stop_token stop_token) {
dld.UpdateDescriptorSets(std::array{buffer_write}, {});
// Set up the command buffer.
cmdbuf.Begin(VkCommandBufferBeginInfo{
// Record command buffer with optimized settings
res.command_buffer.Begin(VkCommandBufferBeginInfo{
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = nullptr,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
.pInheritanceInfo = nullptr,
});
// Clear the buffer.
cmdbuf.FillBuffer(*buffer, 0, VK_WHOLE_SIZE, 0);
// Clear buffer with optimized range
res.command_buffer.FillBuffer(*res.buffer, 0, VK_WHOLE_SIZE, 0);
// Bind descriptor set.
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline_layout, 0,
descriptor_set, {});
// Bind resources
res.command_buffer.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, *res.pipeline_layout, 0,
std::array{res.descriptor_set}, {});
res.command_buffer.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *res.pipeline);
// Bind the pipeline.
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
// Dispatch with optimized group sizes
res.command_buffer.Dispatch(DISPATCH_GROUP_SIZE_X, DISPATCH_GROUP_SIZE_Y, DISPATCH_GROUP_SIZE_Z);
// Dispatch.
cmdbuf.Dispatch(64, 64, 1);
// Finish.
cmdbuf.End();
res.command_buffer.End();
// Submit with optimized submit info
const VkSubmitInfo submit_info{
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = nullptr,
@@ -212,23 +315,77 @@ void TurboMode::Run(std::stop_token stop_token) {
.pWaitSemaphores = nullptr,
.pWaitDstStageMask = nullptr,
.commandBufferCount = 1,
.pCommandBuffers = cmdbuf.address(),
.pCommandBuffers = res.command_buffer.address(),
.signalSemaphoreCount = 0,
.pSignalSemaphores = nullptr,
};
m_device.GetGraphicsQueue().Submit(std::array{submit_info}, *fence);
const auto submit_start = std::chrono::steady_clock::now();
m_device.GetGraphicsQueue().Submit(std::array{submit_info}, *res.fence);
// Wait for completion.
fence.Wait();
// Wait for completion with adaptive timeout
const u64 current_timeout = performance_stats.adaptive_timeout_ns.load(std::memory_order_relaxed);
const auto wait_result = res.fence.Wait(current_timeout);
const auto submit_end = std::chrono::steady_clock::now();
if (wait_result) {
const auto execution_time = submit_end - submit_start;
UpdatePerformanceMetrics(execution_time);
UpdateAdaptiveTimeout(false); // Success, try to reduce timeout
consecutive_timeouts = 0; // Reset consecutive timeout counter
total_timeout_cycles = 0; // Reset total timeout cycles
} else {
performance_stats.timeout_count.fetch_add(1, std::memory_order_relaxed);
UpdateAdaptiveTimeout(true); // Timeout occurred, increase timeout
consecutive_timeouts++;
// If we have too many consecutive timeouts, take action
if (consecutive_timeouts >= 5) {
total_timeout_cycles++;
if (total_timeout_cycles >= 10) {
// Auto-disable turbo mode after 10 cycles of persistent timeouts
LOG_WARNING(Render_Vulkan, "Persistent turbo mode timeouts detected, auto-disabling turbo mode");
turbo_enabled.store(false, std::memory_order_relaxed);
auto_disabled = true;
continue;
}
LOG_WARNING(Render_Vulkan, "Consecutive timeouts ({}), cycle {}/{}, reducing frequency",
consecutive_timeouts, total_timeout_cycles, 10);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
consecutive_timeouts = 0; // Reset for next cycle
}
}
#endif
// Wait for the next graphics queue submission if necessary.
// Performance logging
const auto now = std::chrono::steady_clock::now();
if (now - last_performance_log >= PERFORMANCE_LOG_INTERVAL) {
const auto& stats = GetPerformanceStats();
const auto total_submissions = stats.total_submissions.load(std::memory_order_relaxed);
const auto avg_time_ns = total_submissions > 0 ?
stats.total_execution_time_ns.load(std::memory_order_relaxed) / total_submissions : 0;
LOG_INFO(Render_Vulkan, "Turbo mode stats: {} submissions, avg: {}ns, max: {}ns, min: {}ns, overflows: {}, timeouts: {}, timeout: {}ms, consecutive: {}, cycles: {}",
total_submissions, avg_time_ns,
stats.max_execution_time_ns.load(std::memory_order_relaxed),
stats.min_execution_time_ns.load(std::memory_order_relaxed),
stats.overflow_count.load(std::memory_order_relaxed),
stats.timeout_count.load(std::memory_order_relaxed),
stats.adaptive_timeout_ns.load(std::memory_order_relaxed) / 1'000'000,
consecutive_timeouts, total_timeout_cycles);
last_performance_log = now;
}
// Wait for the next graphics queue submission if necessary
std::unique_lock lk{m_submission_lock};
Common::CondvarWait(m_submission_cv, lk, stop_token, [this] {
return (std::chrono::steady_clock::now() - m_submission_time) <=
std::chrono::milliseconds{100};
return (std::chrono::steady_clock::now() - m_submission_time) <= SUBMISSION_TIMEOUT;
});
}
#if defined(ANDROID) && defined(ARCHITECTURE_arm64)
adrenotools_set_turbo(false);
#endif

View File

@@ -1,11 +1,15 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-FileCopyrightText: Copyright 2025 citron Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <chrono>
#include <mutex>
#include <atomic>
#include <memory>
#include "common/literals.h"
#include "common/polyfill_thread.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
@@ -13,6 +17,8 @@
namespace Vulkan {
using namespace Common::Literals;
class TurboMode {
public:
explicit TurboMode(const vk::Instance& instance, const vk::InstanceDispatch& dld);
@@ -20,17 +26,80 @@ public:
void QueueSubmitted();
// Performance monitoring and control
void SetTurboEnabled(bool enabled);
bool IsTurboEnabled() const noexcept { return turbo_enabled.load(std::memory_order_relaxed); }
// Performance statistics
struct PerformanceStats {
std::atomic<u64> total_submissions{0};
std::atomic<u64> total_execution_time_ns{0};
std::atomic<u64> max_execution_time_ns{0};
std::atomic<u64> min_execution_time_ns{UINT64_MAX};
std::atomic<u32> overflow_count{0};
std::atomic<u32> timeout_count{0};
std::atomic<u64> adaptive_timeout_ns{500'000'000}; // 500ms default
// Delete copy constructor and assignment operator since atomic types are not copyable
PerformanceStats() = default;
PerformanceStats(const PerformanceStats&) = delete;
PerformanceStats& operator=(const PerformanceStats&) = delete;
PerformanceStats(PerformanceStats&&) = delete;
PerformanceStats& operator=(PerformanceStats&&) = delete;
};
const PerformanceStats& GetPerformanceStats() const noexcept { return performance_stats; }
void ResetPerformanceStats();
private:
void Run(std::stop_token stop_token);
void InitializeResources();
void CleanupResources();
void UpdatePerformanceMetrics(std::chrono::nanoseconds execution_time);
void UpdateAdaptiveTimeout(bool timeout_occurred);
// Optimized resource management
struct TurboResources {
vk::Buffer buffer;
vk::DescriptorPool descriptor_pool;
vk::DescriptorSetLayout descriptor_set_layout;
VkDescriptorSet descriptor_set;
vk::ShaderModule shader;
vk::PipelineLayout pipeline_layout;
vk::Pipeline pipeline;
vk::Fence fence;
vk::CommandPool command_pool;
vk::CommandBuffer command_buffer;
};
#ifndef ANDROID
Device m_device;
MemoryAllocator m_allocator;
std::unique_ptr<TurboResources> resources;
#endif
// Threading and synchronization
std::mutex m_submission_lock;
std::condition_variable_any m_submission_cv;
std::chrono::time_point<std::chrono::steady_clock> m_submission_time{};
// Performance control
std::atomic<bool> turbo_enabled{true};
std::atomic<bool> resources_initialized{false};
// Performance monitoring
mutable PerformanceStats performance_stats;
// Configuration
static constexpr std::chrono::milliseconds SUBMISSION_TIMEOUT{100};
static constexpr std::chrono::milliseconds PERFORMANCE_LOG_INTERVAL{5000};
static constexpr u32 DISPATCH_GROUP_SIZE_X = 32; // Reduced from 64 for better performance
static constexpr u32 DISPATCH_GROUP_SIZE_Y = 32; // Reduced from 64 for better performance
static constexpr u32 DISPATCH_GROUP_SIZE_Z = 1;
static constexpr u64 BUFFER_SIZE = 1_MiB; // Reduced from 2MB for better performance
static constexpr u64 MIN_TIMEOUT_NS = 100'000'000; // 100ms minimum
static constexpr u64 MAX_TIMEOUT_NS = 2'000'000'000; // 2s maximum
std::jthread m_thread;
};